

Fire Safety Timber Engineering – Past, present and future

Prof. Dr. Andrea Frangi

ETH Zurich, Institute of Structural Engineering

World Conference on Timber Engineering

Oslo, June 19, 2023

Das Empire State Building in Midtown Manhattan Foto: MIKE SEGAR / REUTERS

Wildfires in the forests

Climate change

2023 February:	420.41 ppm
2022 February:	419.28 ppm
2021 February:	416.75 ppm
2018 February:	408.53 ppm
2017 February:	406.67 ppm

Atmospheric CO₂ at Mauna Loa Observatory

1.5°C scenario: 425 ppm

Fires in the past destroying cities

Fires in the present

Timber: critical points

Fire resistance and separation of walls and floors Fire behaviour of connections with steel elements Fire behaviour of glued timber (influence of adhesives) Fire propagation on combustible surfaces and in cavities Increase of fire load – fire dynamics

Research projects at ETH Zurich (1992-2023)

Fire resistance of timber structures	Experiments		
 Fire resistance and separating function of walls and floors Timber-concrete composite slabs Timber slabs made of hollow core elements Cross-laminated timber slabs Light timber frame wall assemblies 	Fire tests under ISO-fire	EN/ISO fir	⊢ ⊢ el
Fire resistance of connections with steel elements	Fire tests under ISO-fire		
Fire safety of bonded structural timber elements Glueline integriy in fire	Fire tests under ISO-fire		
Natural fire exposure of structural timber	FANCI, Fire simulator	real fire	
Fire dynamics in timber structures	Compartment fire tests	(Simulation)	\searrow

Compartment fire tests

SEMIS

Fire resistance and separating function of walls and floors

Fire spread after 50 minutes ISO fire by a nailed laminated timber slab withou additional layer on the fire unexposed side

Fire resistance of nailed laminated timber slabs

- Nailed or dowelled laminated timber slabs with cladding on the fire unexposed side to guarantee the tightness
 - Charring similar to solid wooden slabs
 - Charring rate: about 0.7 mm/min

Fire resistance of slabs made of hollow core elements (small sections)

Residual cross-section of timber slabs made of hollow core elements after 30 min ISO-fire

Fire resistance of timber-concrete composite slabs

a

Fire test on loaded timber-concrete composite slab

Fire resistance of timber elements

Basic strategies

- Use of massive large cross-sections
- Increase of cross-sections by charring depth
- Protection of the timber elements with (non-) combustible materials

Influence of joint between timber hollow core elements

Residual cross-section after 60 minutes ISO-fire

Die

Fire separating function of walls and floors

Basic strategies

- Gaps, joints backed by other layers
- Cavities filled with non combustible materials like mineral wool
- Multi-layered timber elements
- Coverings, fire protection system, membranes

Favorable timber elements

- Timber-concrete composite slabs
- Cross-laminated timber (CLT) elements

Influence of fall off of fire protection system

Fall off of fire protection system

Timber slab after 17 minutes ISO-fire

Influence of fall off of fire protection system

Increased charring rate observed after failure of the fire protection system is due to temperature high level while no protective char-layer exists to reduce the effect of the temperature. Influence of preheating not relevant!

Fire resistance of Cross Laminated Timber (CLT)

Cross-laminated timber panels after 55 minutes ISO-fire

Second layer directly exposed to fire

Falling off of the first charred layer

1. CLT I

Simplified charring model ("step model")

Fire safety – Bonded structural timber elements

Fire Tests on Timber Boards with Finger Joints

After Failure: Disassembling of the specimen

Separating function of walls and floors

Separating function method (simplified method)

Calculation of the time t_{ins} by adding the contribution to the fire resistance of the different layers

The time of each layer depends on:

- Material and thickness of the layer
- Position of the layer within the assembly

The position has to be considered, because layers influence each other

Connections with steel elements in fire

Fire test with a multiple shear steel-to-timber dowelled connection

Connections with steel elements in fire

Connections with **side** steel plates

Connections with **slotted-in** steel plates

Connection with side steel plates and annular ringed shank nails

Multiple shear steel-to-timber dowelled connection

Charring behaviour

Influence of steel plates and steel dowels on charring

Charring behaviour

Comparison between FE-thermal analysis and fire test

Connection D01.1 (33 min)

FEM (33 min)

ETH zürich

Results of fire tests

Connections failed by embedment failure, i.e. failure mode I according to the Johansen yield model

Tall timber buildings and mass timber

- More severe requirements
- Design for burnout?

Influence of combustible surfaces (1999)

Fire after 7 minutes after fire ignition

Non combustible

Influence of combustible surfaces

Recently many compartment fire tests

- CLT Compartment Fire Tests 2012, Carleton University, Ottawa, Canada
- CLT Compartment Fire Tests 2016, Arup and University of Edinburgh, UK
- CLT Compartment Fire Tests 2017, NFPA Fire Protection Research Foundation
- CLT two-story, full-scale fire tests 2017, ForestProducts Laboratory (FPL), American Wood Council (AWC), U.S. Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF)

CLT Compartment Fire Tests 2012, Carleton University, Ottawa, Canada

Timber Charring and Heat Storage (TiCHS) - Model Design model considering the influence of the char layer

*HRR*_{st} J. Schmid 220...35 kg/m³ Material 2: char layer = energy storage 0 % MC 31.0 MJ/kg 450 kg/m³ 10 % MC 17.5 MJ/kg Material 1: structural timber = energy source

Timber Charring and Heat Storage (TiCHS) - Model

Procedure

- Calculation of the energy balance structure-compartmentexterior → zone-model + TiCHS-model
- Novelty: Calculation of the "sum" of the movable fire load and the structural fire load

Fire load = movable fire load "+" structural fire load

New fire simulator at ETH Zurich

E-THERM

8

New fire simulator at ETH Zurich

Full scale specimens (4-point bending)

Any fire environment (time-temperature AND oxygen concentration)

Fire design of timber structures

Novel calculation models for fire resistance of timber structures were developed based on extensive element and full scale testing

Fire safety in timber buildings	a 🍂	EUROPEAN STANDARD EN 1995-1-2 NORME EUROPEENNE EUROPÄISCHE NORM Neventer 2014	CEV,/TC 259 Date: 2423-05-09 prEN 1995-1-2:2023
alest Sedle	Fire Safe Use of	K3 H 30531 H3 H 30531 English version Eurocode 5: Design of Sindler structures - Part 1-2: General - Structural fine design	Secretariat BD
	Global Design Guide	Install Control of the device and solution are deviced. Device if the device and the device are deviced are	Eurocode 5 — Design of timber structures — Part 1-2: Structural fire design Einführendes Bennest — Haupt-Dennest — Ergänzendes Bennest Dénnest Introductif — Élément central — Dénnest complémentaire
	Edual by	Eurocode 5	Eurocode 5
Technical guideline	Andrew Buchanan Birgit Ostman	Example of the second sec	Revision

New Eurocode 5, fire part (prEN 1995-1-2)

CEN TC250 SC5 PT4

Project Team for drafting the fire part of Eurocode 5

Members PT

Andrea Frangi (Chair, ETH Zurich) Jouni Hakkarainen (Eurofins) Alar Just (Rise & Taltech) Joachim Schmid (ETH Zurich) Norman Werther (TU Munich)

Additional members PT+

Renaud Blondeau (Stora Enso) Harald Krenn (KLH) Gordian Stapf (Henkel)

SC5

WG4

Tasks June 2018 April 2019 April 2020 October 2020 April 2021 September 21 September 23 April 25 September 27 30 March 2028

Start of the work 1st draft 2nd draft 3rd draft Final draft Informal Enquiry Formal Enquiry Formal Vote Last standard piblication Withdrawal Eurocodes GDS/74C254 Date: 2422-612-09 getDS 1995-1-2-2823 Descention 242

code 5 — Design of timber structures — Part 1-2: Structural for design Endiferendes Desarol — Engel Desard — Engineendes Desard Dataset includes — Desarol estat or de a Desard conductantiale

COST

FP1404

New Eurocode 5, fire part (prEN 1995-1-2)

	1. Draft	2. Draft	3. Draft	Final draft	Informal Enquiry
Doc. No.	22	46	69	87	93
Date	04.05.2019	03.05.2020	31.10.2020	03.05.2021	05.09.2021
Pages tot.	75	134	138	149	148
Pages Main part	74	106	99	103	98
Pages Annexes	1	28	39	46	50
Comments received	265	624	364	-	396

A long democratic process towards consensus......

New Eurocode 5, fire part (prEN 1995-1-2)

New Eurocodes prEN 199x-1-2

- 8.2 xx
-

The European charring model

$$d_{char,n} = \beta_n \cdot t$$

 $d_{_{char,n}}$

notional charring depth within one charring phase in mm;

- β_n notional design charring rate within one charring phase in mm/min;
 - *t* time for the charring phase considered, in min.

Charring phases (bond line integrity is maintained)

Initially unprotected sides of timber members

Initially **protected** sides of timber members

- Normal charring phase (Phase 1)

- Encapsulated phase (Phase 0)
- Protected charring phase (Phase 2)
- Post-protected charring phase (Phase 3)
- Consolidated charring phase (Phase 4)

Charring phases (bond line integrity is not maintained)

Initially **unprotected** sides of timber members

Initially **protected** sides of timber members

- Normal charring phase (Phase 1)
- Post-protected charring phase (Phase 3)
- Consolidated charring phase (Phase 4)

- Encapsulated phase (Phase 0)
- Protected charring phase (Phase 2)
- Post-protected charring phase (Phase 3)
- Consolidated charring phase (Phase 4)

Failure time of panels initially exposed to fire

		Vertical		Horizo	ntal
	Panels	t _f [min]	<i>h_p</i> [mm]	t _f [min]	<i>h</i> _р [mm]
S	Type F, one layer	$t_f = 4,6 \cdot h_p - 25$	$9 \le h_p \le 18$	$t_f = 1,3 \cdot h_p + 9$	$9 \le h_p \le 18$
n plasterboard	Type F, two layers or Type F ^a + A	$t_f = 4, 4 \cdot h_p - 50$	$25 \le h_p \le 36$	$t_f = 1,5 \cdot h_p + 15$	$25 \le h_p \le 36$
Gypsur	Type A, one layer	$t_f = 2, 1 \cdot h_p - 6$	$9 \le h_p \le 18$	$t_f = 2, 1 \cdot h_p - 9$	$9 \le h_p \le 18$
	Type A, two layers	$t_f = 1,8 \cdot h_p - 4$	$25 \le h_p \le 36$	$t_f = 1,7 \cdot h_p - 13$	$25 \le h_p \le 36$
Gyp one	sum fibreboards, layer	$t_f = 3,8 \cdot h_p - 21$	$9 \le h_p \le 18$	$t_f = 1,3 \cdot h_p + 7$	$9 \le h_p \le 18$
Gypsum fibreboards, two layers $t_f = 3,7 \cdot h_p - 42$ $25 \le h_p \le 36$ $t_f = 1,3 \cdot h_p + 14$ $25 \le h_p \le 36$				$25 \le h_p \le 36$	
where h_p is the thickness of the single panel or the total thickness of multiple panels, in mm.					
a Type F directly exposed to fire.					

Tabulated design data for start of charring and failure times

	Thickness of the fire protection system h_p [mm] ^a		Layers backed by insulation ^b		Layers backed by panel °	
Panels	layer 1 h ₁	layer 2 h ₂	Start of charring t _{ch} [min]	Failure time t _{f.pr} [min]	Start of charring t _{ch} [min]	Failure time t _{f,pr} [min]
Gypsum plasterboard	12,5	-	17	20	22	22
Туре А	15	21	22	25	28	28
	18	-	29	32	35	35
	12,5	12,5	28	41	39	45
	15	15	36	50	49	55
	18	18	47	61	60	67
Gypsum plasterboard	12,5	-	17	32	24	35
Type F	15	12	22	44	30	48
	18	-	29	58	37	63
	12,5	12,5	39	60	49	66
	15	15	50	82	60	90
	18	18	63	108	75	119
Gypsum plasterboard Type F + Type A (Type F is layer 1)	12,5 15	12,5 12,5	39 45	60 71	49 55	66 78
Gypsum fibreboard	12,5	-	17	26	24	29
	15	· .	22	36	30	39
	18	-	29	47	37	52
	12,5	12,5	39	50	49	55
	15	15	50	69	60	76
	18	18	63	91	75	100

Tabulated design data for CLT

Table 6.6 — Values of the depth of the effective cross-section h_{ef} in mm for initially protected floors made of CLT with bond line integrity maintained

#		Total		h _{ef} [mm]	
# of layers	Layup [mm]	thickness [mm]	30 min with t _{ch} ≥ 20 min	$60 \min$ with $t_{ch} \ge 30$ min	90 min with $t_{ch} \ge 60$ min
3	20-20-20	60	18	16	16
3	40-40-40	120	95	38	38
5	20-20-20-20-20	100	58	56	56
5	40-20-20-20-40	140	115	78	78
5	40-20-40-20-40	160	135	98	98
5	40-30-40-30-40	180	155	108	108
5	40-40-40-40	200	175	118	118

Eller A A Burich

Design of timber members -Effective cross-section method

- 1 Fire exposed side
- 2 Residual cross-section
- 3 Effective cross-section
- d_0 is the zero-strength layer depth
- $d_{\text{char,n}}$ is the notional charring depth
- $d_{\rm ef}$ is the effective charring depth
- k_{side} is the number of respective sides exposed to fire

Design of linear timber members

Table 7.2 – Post-protection factor k_3 for linear timber members made of GLT, CLT and GLVL

Charring direction	Layer			
Charming direction	first layer	other layers		
А	2	2		
В	2	not applicable		
С	2	1,3		
D	2	not applicable		
	^	<u> </u>		
Caused by:	Fall-off of protection system	Fall-off of charred layer		

Design of timber frame assemblies

(a) fully insulated cavities (PL1 to PL 3)

(b) partially insulated cavities (PL1 to PL 3)

(c) side protection of timber member with cavity insulation PL1

(d) void cavities

Key:

- 1 Fire exposed side of the timber frame assembly
- 2 Unexposed side of the timber frame assembly
- 3 Fire protection system, cladding on the fire exposed side
- 4 Cladding on the unexposed side
- 5 Cavity insulation
- 6 Fire exposed side of the timber member
- 7 Lateral side of the timber member
- *b* Width of the initial cross-section of the timber member
- *h* Height of the initial cross-section of the timber member
- h_{ins} Thickness of the cavity insulation

Design of connections

Exponential reduction method

$$R_{k,fi} = R_k \cdot e^{\left(-c_1 \cdot t_{req} + c_2 \cdot t_{1,fi} + c_3\right)}$$

Tabulated design method

Fire resistance		a		
time, t_{fi}	$\eta_{fi} \leq 0, 1$	$\eta_{_{fi}} \le 0, 2$	$\eta_{fi} \leq 0,3$	a_{fi}
30 min	≥ 30	≥ 35	≥ 40	≥ 0
60 min	≥ 60	≥ 70	≥ 80	≥ 40
90 min	≥ 90	≥ 105	≥ 120	≥ 80
120 min	≥ 120	≥ 140	≥ 160	≥ 120

Advanced design methods

Figure 8.3 – Heat conductivity as function of temperature for timber members and wood-based panels except OSB and plywood.

Detailing

Rules for

- dimensions and spacings
- fixing and connections of panels, gaps of joints
- fixing of cavity insulation
- joints in and between elements
- penetrations and openings

EN 1995-1-2:2004

Very few general rules (2 pages) No rules for joints between the elements, penetrations

Staples		Nails		So	rews
Wall	Ceiling	Wall	Ceiling	Wall	Ceiling
Ma	ximum spacing of	fasteners for w	ood-based panels	and wood pane	lling
150	150	150	150	250	250
	Maximum s	pacing of fasten	ers for gypsum pla	sterboards	
80	80	120	120	250	170
	Maximum	spacing of faster	ners for gypsum fil	breboards	
	150	200	150	250	200

Table 9.1 – Perimeter spacing between fasteners for the fire exposed layer of woodbased panels, wood panelling, gypsum plasterboards and gypsum fibreboards^a

^a Internal spacing may be increased to twice the values given in the table, but not more than 300 mm

Annex B Assessment of the bond line integrity in fire

Table B.1	2 - Assessment of the bond line integrity in fire	EN 17224:2019 (E)
Bond line integrity maintained	$\beta_{mean,specimen} \leq 1,05 \cdot \beta_{mean,reference}$	CEN/TC 193
Bond line integrity not	2	Date: 2019-07
maintained	$\beta_{mean,specimen} > 1,05 \cdot \beta_{mean,reference}$	EN 17224:2019

CEN/TC 193

Secretariat: UNE

Performance of wood adhesives at high temperatures and fire - Test method, evaluation and classification wood adhesives at elevated temperatures

Thermal actions for structural fire loads of timber structures: new Annex H of EN 1991-1-2

- $RHR_i = H_i \cdot \dot{m}_i$
- $RHR_{st} = (H_{ww} \cdot \dot{m}_{ww} H_{ch} \cdot \dot{m}_{ch,tm}) + (H_{ch} \cdot \dot{m}_{ch,ox})$

- RHR_{st} is the rate of heat release by the structural fuel load per unit area, in MW/m²;
 - H_i is the net calorific value of the material i, in MJ/kg;
 - \dot{m}_i " is the area specific mass loss rate of the material i, in kg/(m²s);
 - ww is the index for the wet wood;
 - ch is the index for the char layer;
 - ox is the index for the oxidation;
 - tm is the index for the thermal modification of the wood material to the char material.

Design of timber structures exposed to physically based design fires: new Annex A of EN 1995-1-2

$$RHR_{st} = s_{10} \cdot \beta_{st} \cdot \alpha_{st}$$

- → Factor s₁₀ describes the rate of heat release per 1m² and 1mm/min
- → Factor α_{st} describes ratio between energy storage vs. heat release

$$d_{char,t} = \left(\frac{\int_{0}^{t} (T^{2}) dt}{1,35 \cdot 10^{5}}\right)^{\frac{1}{1,6}}$$

EH zürich

EN 1995-1-2:2025 vs EN 1995-1-2:2004

- The European charring model
 - Notional design charring rate
 - Failure time of the fire protection system
 -
- Effective cross-section method
 - New rules for CLT
 - New rules for TCC
 - Revised rules for Timber Frame Assemblies
 -
- Revised rules for connections
 - Extension up to 120 min
 -
- Revised rules for detailing
- Design of timber structures exposed to physically based design fires

Evolution – consensus – future

Evolution of Swiss fire regulations

Until 2004

Since 2005

Since 2015

Winterthur, Residential Area Giesserei

Zurich, Residential Area Freilager

Risch-Rotkreuz, S22 Office building

Winterthur, Residential Area Sue&til

The statement

Risch Rotkreuz Suurstoffi Arbo BF1

15 storeys, 60m, 2019 in 15 weeks! Sprinkler, R60 Unprotected linear timber members

Fire safety of timber structures

Fire safety is not primarily a question of building material but of **concept** (education, quality assurance, careful design and execution, maintenance)

Further education

New Master of Advanced Studies at ETH Zurich:

ETH MAS Fire Safety Engineering (https://mas-brandschutz.ethz.ch/)

Swiss Lignum-Documentation Fire Safe Timber

Quality of construction

- Fire safety plan with all fire safety measures
- Careful planning and detailing
- Professionally implementation of fire safety measures during the execution
- Periodic controls and maintenance

 The intensity of maintenance and controls must be set depending of the type of structures and the type and importance of the building

Tall timber buildings in Switzerland

The Swiss cheese approach

«EMPIRE STATE OF WOOD» New York, 440 m

